Tag Archives: planetary transmission

China best Cheap Price Gvb78 Gpb CZPT Gear Box Transmission High Precision Planetary Gearbox cycloidal drive mechanism

Product Description

TaiBang Motor Industry Group Co., Ltd.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

Model Instruction

GB090-10-P2

GB 090 571 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
571 means 1:10 P0:High Precision Backlash

P1:Precision Backlash

P2:Standard Backlash

Main Technical Performance
 

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

 

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

 Noise test standard:Distance 1m,no load.Measured with an input speed 3000rpm 

 

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

How to Use a Cyclone Gearbox

Often, a cycloidal gearbox is used in order to achieve a torque transfer from a motor or pump. This type of gearbox is often a common choice as it has a number of advantages over a regular gearbox. Its main advantage is that it is easy to make, which means that it can be incorporated into a variety of applications. However, if you want to use a cycloidal gearbox, there are a few things that you need to know. These include the operation principle, the structure and the dynamic and inertial effects that come with it.

Dynamic and inertial effects

Several studies have been carried out on the static and dynamic properties of cycloidal gears. The study of these effects is beneficial in assisting optimal design of cycloidal speed reducers.
In this paper, the dynamic and inertial effects of a two-stage cycloidal speed reducer have been investigated using the CZPT program package. Moreover, a new model for cycloidal reducers based on non-linear contact dynamics has been developed. The new model aims to predict several operational conditions.
The normal excitation contact force for the cycloid discs of the first and second stage is very similar. However, the total deformation at the contact point is different. This effect is mainly due to the system’s own oscillations. The cycloid discs of the second stage turn around the ring gear roller with a 180deg angle. This angle is a significant contributor to the torque loads. The total excitation force on the cycloid discs of first and second stage is 1848 N and 2068.7 N, respectively.
In order to analyze the contact stress, different gear profiles were investigated. The mesh density was considered as an important design criterion. It was found that a bigger hole reduces the material content of the cycloidal disc and results in more stresses.
Moreover, it is possible to reduce the contact forces in a more efficient manner by changing the geometric parameters. This can be done by mesh refinement along the disc width. The cycloidal disc has the greatest influence on the output results.
The efficiency of a cycloidal drive increases with the increase in load. The efficiency of a cycloidal reducer also depends on the eccentricity of the input shaft and the cycloidal plate. The efficiency curve for small loads is linear. However, for the larger loads, the efficiency curve becomes more non-linear. This is because the stiffness of the cycloid reducer increases as the load increases.

Structure

Despite the fact that it looks like a complicated engineering puzzle, the construction of a cycloidal gearbox is actually quite simple. The key elements are the base, the load plate and the thrust bearing. All these elements work together to create a stable, compact gearbox.
The base is a circular section with several cylindrical pins around its outer edge. The pins are fixed on a fixed ring that holds them in a circular path. The ring serves as a reference circle. The circle’s size is approximately 5mm in diameter.
The load plate is a series of threaded screw holes. These are arranged 15mm away from the center. These are used to anchor external structures. The load plate must be rotated around the X and Y axis.
The thrust bearing is placed on top of the load plate. The bearing is made of an internal diameter of 35mm and an external diameter of 52mm. It is used to allow rotation around the Z axis.
The cycloidal disc is the centerpiece of the cycloidal gearbox. The disc has holes for the pins that drive the output shaft. The holes are larger than those used in output roller pins. The disc also has a reduced eccentricity.
The pins are attached to the cycloidal disc by rolling pins. The pins are made of a material that provides mechanical support for the drive during high-torque situations. The pins have a 9mm external diameter. The disc has a number of lobes and is rotated by one lobe per shaft revolution.
The cycloidal gearbox also has a top cover that helps keep the components together. The cover has a pocket for tools. The top cover also has threads that screw into the casing.helical gearbox

Operation principle

Among many types of gear transmissions, cycloidal gearboxes are used in heavy machinery and multi-axis robots. They are highly effective, compact and capable of high ratios. In addition, they have an overload capability.
Cycloid disks are driven by eccentric shafts that rotate around fixed ring pins. Roller pins of the pin disc engage with holes in the cycloidal disc. These roller pins drive the pin disc and the pin disc transfers the motion to the output shaft.
Unlike conventional gear drives, cycloidal drives have low backlash and high torsional stiffness. They are ideally suited to heavy loads and all drive technologies. The lower mass and compact design of the cycloidal disk also contributes to its high efficiency and positioning accuracy.
The cycloidal disc plays a central role in the gearbox kinematics. It rotates around a fixed ring in a circle. When the disc is pushed against the ring gear, the pins engage with the disc and the roller pins rotate around the pins. This rotating motion generates vibration, which travels through the driven shafts.
Cycloid discs are typically designed with a short cycloid, so that the eccentricity is minimized. This reduces unbalance forces at high speeds. Ideally, the number of lobes on the cycloid is smaller than the number of surrounding pins. This reduces the amount of Hertzian contact stress.
Unlike planetary gears, cycloidal gears have high accuracy and are capable of withstanding shock loads. They also experience low friction and less wear on tooth flanks. They also have higher efficiency and load capacity.
Cycloid gears are generally more difficult to manufacture than involute gears. Cycloid gears are not suitable for stacking gear stages. They require extreme accuracy for manufacturing. However, their smaller size and low backlash, high torsional stiffness, and low vibration make them ideal for use in heavy machines.

Involute gear tooth profile

Almost all gears are manufactured with an involute gear tooth profile. Cycloid gears are also produced with this profile. Compared with involute gears, cycloid gears are stronger and can transmit more power. However, they can also be more difficult to manufacture. This makes them costlier.
The involute gear tooth profile is a smooth curve. It is derived from the involute curve of a circle. A tangent to the base circle is the normal at any point of an involute.
This curve has properties that allow the involute gear teeth to transfer motion in perpendicular direction. It is also the path traced by the end of the string unwrapping from a cylinder.
An involute profile has the advantage of being easy to manufacture. It also allows for smooth meshing despite misalignment of the centre distance. This profile is also preferred over a cycloid tooth profile, but it is not the best in every regard.
Cycloid gear teeth are also made of two curves. Unlike involute teeth, cycloid gear teeth have a consistent radius. Cycloid gears are less likely to produce noise. But they are also more expensive to manufacture.
Involute teeth are easier to manufacture because they have only one curve. Cycloid gears can also be made with a rack type cutter. This makes them cheaper to manufacture. However, they require an expert design. They can also be manufactured with a gear shaper that includes a pinion cutter.
The tooth profiles that satisfy the law of gear-tooth action are sometimes called conjugate profiles. The involute profile is the most common of these. It allows for constant torque transmission.helical gearbox

Backlash

Typically, cycloidal drives provide a high ratio of transmission with no backlash. This is because the cycloid disc is driven by an eccentric shaft. During rotation, the cycloid disc rotates around a fixed ring. This ring also rotates independently of the center of gravity.
The cycloid disc is typically shortened to reduce the eccentricity. This helps to minimize the unbalance forces that may occur at high speeds. The cycloid also offers a larger gear ratio than traditional gears. This provides a better positional accuracy.
Cycloid drives also have a high torsional stiffness. This provides greater torsional resilience and shock load capabilities. This is important for a number of reasons, such as in heavy-duty applications.
Cycloid drives also have lower mass. These benefits make them ideally suited for all drive technologies. The design also allows for higher torsional stiffness and service life. These drives also have a much smaller profile.
Cycloid drives are also used to reduce speed. Because of the high torsional stiffness of the cycloid, they also have high positioning accuracy.
Cycloid drives are well-suited to a variety of applications, including electric motors, generators, and pump motors. They are also highly resistant to shock loads, which is important in a variety of applications. This design is ideal for applications that require a large transmission ratio in a compact design.
Cycloid drives also have the advantage of minimizing the clearance between the mating components. This helps to eliminate interference and ensure a positive fit. This is particularly important in gearboxes. It also allows for the use of a load cell and potentiometer to determine the backlash of the gearbox.
China best Cheap Price Gvb78 Gpb CZPT Gear Box Transmission High Precision Planetary Gearbox   cycloidal drive mechanismChina best Cheap Price Gvb78 Gpb CZPT Gear Box Transmission High Precision Planetary Gearbox   cycloidal drive mechanism
editor by CX 2023-05-09

China Transmission Geared Motor Unit Src Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox cycloidal gearbox lubrication

Item Description

SRC HELICAL GEARBOX

Items Description

We produce velocity reducers in rigorous accordance with ISO9001 common to offer our buyers with high quality gearboxes at competitive charges. Our gearboxes are geared up with equipment from intercontinental popular makes, these kinds of as lubricant from Shell brand name, and bearing from CZPT manufacturer. The housing and equipment are produced in our firm below stringent quality control. All our merchandise are offered in big stocks, and we can also offer you with tailored reducer solutions, pleasefeel self-assured to speak to us.

TRC: code for gear models series

1. No code signifies foot-mounted

2.F: B5 flange mounted

3.Z:B14 flange mounted

Specification code of gear units 01,02.03.04

B01,MO1……means foot code,with no flange

one.I.II1.B5 Output flange specification, defaultl not to compose out is ok

2. IECinput flange

3.HS: Shaft enter

Transmission ratio of equipment units

one.M1: Mounting positio, default mounting position M1 not to compose out is ok

1.No mark indicates without having motor

two. Product motos (poles of energy)voltage – frequency

voltage – frequency

 

 

HangZhou Sihai Machinery Co., Ltd.

History: Much more than 20 a long time of knowledge in the manufacture of reducer merchandise.Scale: Go over doing work location of 13300 square. meters,have much more than 113 employees.
Technological innovation: A team of expert . technical engineers and a powerful R&D crew.
Management: Scientific ERP administration and stringent top quality management program.
Tools: fifty CNC lathes,6 machining. centers, 6 gear grinding machines, 2 large-speed.hard hobbing devices, 12 gear hobbing
machines. 10 CNC cylindrical grinding machines,4 CNC inside grinding machines 1spectrometer, higher-pace equipment shaping 1 device,
2 gear measuring centers 1 coordinate measuring instrument.
lnnovation: Continuously diversify items range to fulfill customers’needs.Generation capacity: a thousand pcs/day.
Prolonged-phrase supplier of world-course organizations: t he primary markets are in Southea st Asia, Europe, Middle East.
Marketing model: All export enterprise.

 

 

 

To Be Negotiated 1 Piece
(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Step: Double-Step
Type: Gear Reducer
Transport Package: 1PCS/1box
Specification: aluminium

###

Customization:

###

TRC: code for gear units series
1. No code means foot-mounted
2.F: B5 flange mounted
3.Z:B14 flange mounted
Specification code of gear units 01,02.03.04
B01,MO1……means foot code,without flange
1.I.II1.B5 Output flange specification, defaultl not to write out is ok
2. IECinput flange
3.HS: Shaft input
Transmission ratio of gear units
1.M1: Mounting positio, default mounting position M1 not to write out is ok
1.No mark means without motor
2. Model motos (poles of power)voltage – frequency
voltage – frequency
 
 
To Be Negotiated 1 Piece
(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Step: Double-Step
Type: Gear Reducer
Transport Package: 1PCS/1box
Specification: aluminium

###

Customization:

###

TRC: code for gear units series
1. No code means foot-mounted
2.F: B5 flange mounted
3.Z:B14 flange mounted
Specification code of gear units 01,02.03.04
B01,MO1……means foot code,without flange
1.I.II1.B5 Output flange specification, defaultl not to write out is ok
2. IECinput flange
3.HS: Shaft input
Transmission ratio of gear units
1.M1: Mounting positio, default mounting position M1 not to write out is ok
1.No mark means without motor
2. Model motos (poles of power)voltage – frequency
voltage – frequency
 
 

The Basics of a Cyclone Gearbox

Besides being compact, cycloidal speed reducers also offer low backlash and high ratios. Because of the small size of the drive, they are ideal for applications where space is a problem.helical gearbox

Involute gear tooth profile

Almost all gears use an involute gear tooth profile. This profile has a single curve, which means that the gear teeth do not have to be aligned closely with each other. This profile is smooth and can be manufactured easily.
Cycloid gears have a combination of epicycloid and hypocycloid curves. This makes them stronger than involute gear teeth. However, they can be more expensive to manufacture. They also have larger reduction ratios. They transmit more power than involute gears. Cycloid gears can be found in clocks.
When designing a gear, you need to consider several factors. Some of these include the number of teeth, the tooth angle and the lubrication type. Having a gear tooth that is not perfectly aligned can result in transmission error, noise and vibration.
The tooth profile of an involute gear is usually considered the best. Because of this, it is used in a wide variety of gears. Some of the most common applications for this profile are power transmission gears. However, this profile is not the best for every application.
Cycloid gears require more complex manufacturing processes than involute gear teeth. This can cause a larger tooth cost. Cycloid gears are used for less noisy applications.
Cycloid gears also transmit more power than involute gears. This can cause problems if the radii change tangentially. However, the shape is more simple than involute gears. Involute gears can handle centre sifts better.
Cycloid gears are less susceptible to transmission error. Cycloid gears have a convex surface, which makes them stronger than involute teeth. Cycloid gears also have a larger reduction ratio than involute gears. Cycloid teeth do not interfere with the mating teeth. However, they have a smaller number of teeth than involute teeth.

Rotation on the inside of the reference pitch circle of the pins

Whether a cycloidal gearbox is designed for stationary or rotating applications, the fundamental law of gearing must be observed: The ratio of angular velocities must be constant. This requires the rotation on the inside of the reference pitch circle of the pins to be constant. This is achieved through a series of cycloidal teeth, which act like tiny levers to transmit motion.
A cycloidal disc has N lobes which are rotated by three lobes per rotation around N pins. The number of lobes on a cycloidal disc is a significant factor in determining the transmission ratio.
A cycloidal disc is driven by an eccentric input shaft which is mounted to an eccentric bearing within an output shaft. As the input shaft rotates, the cycloidal disc moves around the pins of the pin disc.
The drive pin rotates at a 40 deg angle while the cycloidal disc rotates on the inside of the reference pitch circle of pins. As the drive pin rotates, it will slow the output motion. This means that the output shaft will complete only three revolutions with the input shaft, as opposed to nine revolutions with the input shaft.
The number of teeth on a cycloidal disc must be small compared to the number of surrounding pins. The disc must also be constructed with an eccentric radius. This will determine the size of the hole which will be required for the pin to fit between the pins.
When the input shaft is turned, the cycloidal disc will rotate on the inside of the reference pitch circle of roller pins. This will then transmit motion to the output shaft. The output shaft is supported by two bearings in an output housing. This design has low wear and torsional stiffness.helical gearbox

Transmission ratio

Choosing the right transmission ratio of cycloidal gearbox isn’t always easy. You might need to know the size of your gearbox before you can make an educated choice. You may also need to refer to the product catalog for guidance. For example, CZPT gearboxes have some unique ratios.
A cycloidal gear reducer is a compact and high-speed torque transmission device that reverses the direction of angular movement of the follower shaft. It consists of an eccentric cam positioned inside a cycloidal disc. Pin rollers on the follower shaft fit into matching holes in the cycloidal disc. In the process, the pins slide around the holes, in response to wobbling motion. The cycloidal disc is also capable of engaging the internal teeth of a ring-gear housing.
A cycloidal gear reducer can be used in a wide variety of applications, including industrial automation, robotics and power transmissions on boats and cranes. A cycloidal gear reducer is ideally suited for heavy duty applications with large payloads. They require specialized manufacturing processes, and are often used in equipment with precise output and high efficiency.
The cycloidal gear reducer is a relatively simple structure, but it does require some special tools. Cycloid gear reducers are also used to transmit torque, which is one of the reasons they are so popular in automation. Using a cycloidal gear reducer is a good choice for applications that require higher efficiency and lower backlash. It is also a good choice for applications where size is a concern. Cycloid gears are also a good choice for applications where high speed and high torque are required.
The transmission ratio of cycloidal gearbox is probably the most important function of a gearbox. You need to know the size of your gearbox and the type of gears it contains in order to make the right choice.

Vibration reduction

Considering the unique dynamics of a cycloidal gearbox, vibration reduction measures are required for a smooth operation. These measures can also help with the detection of faults.
A cycloidal gearbox is a gearbox with an eccentric bearing that rotates the center of the gears. It shares torque load with five outer rollers at any given time. It can be applied in many applications. It is a relatively inexpensive asset. However, if it fails, it can have significant economic impacts.
A typical input/output gearbox consists of a ring plate and two cranks mounted on the input shaft. The ring plate rotates when the input shaft rotates. There are two bearings on the output shaft.
The ring plate is a major noise source because it is not balanced. The cycloidal gear also produces noise when it meshes with the ring plate. This noise is generated by structural resonance. Several studies have been performed to solve this problem.
However, there is not much documented work on the condition monitoring of cycloidal gearboxes. In this article, we will introduce modern techniques for vibration diagnostics.
A cycloidal gearbox with a reduced reduction ratio has higher induced stresses in the cycloidal disc. In this case, the size of the output hole is larger and more material is removed from the cycloidal disc. This increase in the disc’s stresses leads to higher vibration amplitudes.
The load distribution along the width of the gear is an important design criterion. Using different gear profiles can help to optimize the transmission of torque. The contact stress of the cycloidal disc can also be investigated.
To determine the amplitude of the noise, the frequency of the gear mesh is multiplied by the shaft rate. If the RPM is relatively stable, the frequency can be used as a measure of magnitude. However, this is only accurate at close to failure.helical gearbox

Comparison with planetary gearboxes

Several differences exist between cycloidal gearboxes and planetary gearboxes. They are related to gear geometry and manufacturing processes. Among them, there are:
– The output shaft of a cycloidal gearbox has a larger torque than the input shaft. The rotational speed of the output shaft is lower than the input shaft.
– The cycloid gear disc rotates at variable velocity, while the planetary gear has a fixed speed. Consequently, the cycloid disc and output flange transmission accuracy is lower than that of the planetary gears.
– The cycloidal gearbox has a larger gripping area than the planetary gear. This is an advantage of the cycloidal gearbox in that it can handle larger loads.
– The cycloid profile has a significant impact on the quality of contact meshing between the tooth surfaces. The width of the contact ellipses increases by 90%. This is a result of the elimination of undercuts of the lobes. In this way, the contact force on the cycloid disc is decreased significantly.
– The cycloid drive has lower backlash and high torsional stiffness. This allows a cycloidal drive to be more stable against shock loads. The cycloid drive is also a compact design, which is ideally suited for applications with large transmission ratios.
– The output hub of the cycloid gearbox has movable pins and rollers. These components are attached to the ring gear in the outer gearbox. The output shaft is also turned by the planet carrier. The output hub of the cycloid system is composed of two parts: the ring gear and the output flange.
– The input shaft of a cycloidal gearbox is connected to a servomotor. The input shaft is a cylindrical element that is fixed to the planet carrier.
China Transmission Geared Motor Unit Src Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox     cycloidal gearbox lubricationChina Transmission Geared Motor Unit Src Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox     cycloidal gearbox lubrication
editor by czh 2023-01-12

China Gpg Gpb Transmission Reducer Gearbox High Precision Planetary Gearhead with Cheap Price cycloidal gear reducer design

Merchandise Description

TaiBang Motor Market Team Co., Ltd.

The principal goods is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV massive equipment motors, Planetary gear motor ,Worm gear motor etc, which utilised commonly in different fields of producing pipelining, transportation, food, drugs, printing, material, packing, business office, apparatus, enjoyment etc, and is the preferred and matched merchandise for automated machine. 

Model Instruction

GB090-10-P2

GB 090 571 P2
Reducer Collection Code Exterior Diameter Reduction Ratio Reducer Backlash
GB:Higher Precision Square Flange Output

GBR:Higher Precision Correct Angle Sq. Flange Output

GE:High Precision Round Flange Output

GER:High Precision Proper Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
one hundred fifty five:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
a hundred and fifteen:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
571 means 1:10 P0:High Precision Backlash

P1:Precision Backlash

P2:Common Backlash

Major Technological Efficiency
 

Item Amount of phase Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 three .03 .sixteen   .sixty one   3.twenty five nine.21 28.98 sixty nine.61
four .03 .14   .forty eight   two.seventy four 7.fifty four 23.67 fifty four.37
five .03 .thirteen   .forty seven   two.71 7.forty two 23.29 53.27
6 .03 .13   .forty five   two.65 7.twenty five 22.75 51.seventy two
seven .03 .13   .forty five   two.62 7.14 22.forty eight fifty.ninety seven
eight .03 .13   .forty four   two.fifty eight 7.07 22.fifty nine 50.eighty four
nine .03 .thirteen   .44   2.57 seven.04 22.fifty three fifty.63
10 .03 .thirteen   .forty four   2.57 seven.03 22.fifty one fifty.56
2 15 .03 .03 .thirteen .thirteen .forty seven .forty seven two.71 7.forty two 23.29
twenty .03 .03 .13 .13 .forty seven .forty seven two.seventy one seven.42 23.29
twenty five .03 .03 .13 .13 .47 .forty seven two.seventy one seven.forty two 23.29
thirty .03 .03 .13 .13 .47 .forty seven 2.seventy one seven.forty two 23.29
35 .03 .03 .13 .13 .47 .forty seven 2.seventy one 7.42 23.29
40 .03 .03 .13 .13 .forty seven .47 2.seventy one 7.forty two 23.29
forty five .03 .03 .13 .thirteen .47 .47 two.71 seven.forty two 23.29
fifty .03 .03 .thirteen .thirteen .forty four .44 two.57 7.03 22.51
sixty .03 .03 .13 .thirteen .44 .44 2.57 seven.03 22.51
70 .03 .03 .13 .13 .44 .forty four 2.fifty seven 7.03 22.51
80 .03 .03 .thirteen .13 .44 .44 two.57 7.03 22.fifty one
ninety .03 .03 .13 .thirteen .forty four .44 two.fifty seven 7.03 22.51
a hundred .03 .03 .13 .13 .44 .44 two.57 seven.03 22.51

 

Item Amount of phase GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
two           ≤3 ≤3 ≤3 ≤3
Precision P1 one ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
two ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 one ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 three seven seven fourteen 14 twenty five 50 145 225
2 3 seven seven 14 14 twenty five fifty a hundred forty five 225
Noise(dB) one,two ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max enter velocity(rpm) one,2 ten thousand 10000 ten thousand 8000 8000 8000 6000 6000 4000

 Noise test normal:Distance 1m,no load.Calculated with an input velocity 3000rpm 

 

US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precision Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000
US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precision Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

The Basics of Designing a Cyclone Gearbox

Compared to conventional gearboxes, the cycloidal gearbox offers a number of advantages including a higher ratio of transmission, robustness against shock loads, and greater positioning accuracy. However, designing a cycloidal gearbox can be complicated. This article will discuss some of the basic design principles. In addition, it will cover topics such as size, position accuracy, and transmission ratios.helical gearbox

Basic design principles

Unlike a conventional ring gear, a cycloidal gearbox uses a cycloidal disc to provide torque multiplication. The output direction of the cycloidal gear disc is opposite to the rotation of the input shaft. This allows for more compact gear construction. It also allows for increased load capacity.
Cycloid drive kinematics can appear complex, but they are actually quite simple. Instead of rotating around the center of gravity like conventional gears, the cycloidal disc rotates around fixed pins. This provides a higher reduction ratio.
To reduce vibrations and noise, multiple cycloidal discs are used. This allows for uniform distribution of forces on the carrier pin devices. This also provides a better rotational balance. In addition, multiple cycloidal discs reduce the axial moment of the carrier pin devices.
The cycloidal gear disc is supported by a separate gear disc bearing. This design provides a low component count and reduces wear. This type of kinematics can also be used in an electric motor with a high power density.
The cycloidal gear disc provides a high reduction ratio, which allows for compact construction. Unlike a ring gear, the cycloidal disc has fewer teeth. It also provides a higher reduction ratio, which is advantageous for high rotational input speed applications.
Cycloid gear discs have cylindrical holes, which allow for carrier pin devices to protrude through them. This is useful because the carrier pin devices can roll along the inside wall of the cylindrical hole in the gear disc.
A load plate is also used to provide anchorage for external structures. This plate contains threaded screw holes arranged 15mm away from the center. It has a 9mm external diameter and a 3mm through hole.

Transmission ratios up to 300:1

cycloidal gearboxes are used in a wide range of applications, from machine tools to medical imaging devices. Compared to planetary gearboxes, they offer superior positioning accuracy, torsional stiffness, backlash, and fatigue performance.
Cycloid gearboxes are also capable of transmitting more torque than planetary gears. In addition, they have a lower Hertzian contact stress and higher overload protection. Cycloid gearboxes are able to provide transmission ratios up to 300:1 in a small package.
Cycloid gears also have lower backlash over extended periods, making them an ideal choice for applications with critical positioning accuracy. Cycloid gearboxes also have good wear resistance, as well as low friction. Cycloid gears are lightweight and have good torsional stiffness, making them ideal for applications with heavy loads.
Cycloid gearboxes have several different designs. They can provide transmission ratios up to 300:1 without the need for additional pre-stages. Cycloid gears also require more accurate manufacturing processes than involute gears. Cycloid gearboxes can also be used for applications that require high power consumption, and can withstand shock loads.
Cycloid gearboxes can be adapted to fit most common servomotors. They have a modular design, all-round corrosion protection, and easy installation. Cycloid gears have a radial clamping ring, which reduces inertia by up to 39%.
CZPT Precision Europe GmbH, a subsidiary of CZPT Group, has developed an innovative online configurator to simplify the configuration of gearboxes. CZPT cycloidal gearheads are precision-built, robust, and reliable. They have a two-stage reduction principle, which minimises vibration and provides even force distribution.
Cycloid gears are capable of providing transmission ratios from 30:1 to 300:1. Cycloid gearboxes can achieve high gear ratios because they require fewer moving parts, and they have a low backlash.helical gearbox

Robustness against shock loads

Unlike conventional gearboxes that are easily damaged by shock loads, the cycloidal gearbox is extremely robust. It is a versatile solution that is ideally suited for handling equipment, food manufacturing, and machine tools.
The mechanical construction of a cycloidal gearbox consists of several mechanical components. These include cycloidal wheels, bearings, transformation elements, and needles. In addition, it has high torsional stiffness and tilting moment. It is also accompanied by highly nonlinear friction characteristic.
In order to assess the robustness of the cycloidal gearbox against shock loads, a mathematical model was developed. The model was used to calculate the stress distribution on the cycloid disc. This model can be used as a basis for more complex mechanical models.
The model is based on new approach, which allows to model stiction in all quadrants of the cycloid gear. In addition, it can be applied to actuator control.
The mathematical model is presented together with the procedure for measuring the contact stress. The results are compared to the measurement performed in the real system. The model and the measurement are found to be very close to each other.
The model also allows for the analysis of different gear profiles for load distribution. In addition, it is possible to analyze contact stresses with different geometric parameters. The mesh refinement along the disc width helps to ensure an even distribution of contact forces.
The stiction breakaway speed is calculated to the motor side. The non-zero current is then derived to the input side of the gearbox. In addition, a small steady phase is modeled during the speed direction transition. The results of the simulation are compared to the measurement. The results show that the model is extremely accurate.

Positioning accuracy

Getting the correct positioning accuracy from a cycloidal gearbox is no small feat. This is because the gears are compact, and the clearances are relatively small. This means you can expect a lot of torque from your output shaft. However, this is only part of the picture. Other concerns, such as backlash, kinematic error, and loading are all important considerations.
Getting the best possible positioning accuracy from a cycloidal gearbox means choosing a reducer that is well-made and correctly configured. A properly-selected reducer will eliminate repeatable inaccuracies and provide absolute positioning accuracy at all times. In addition, this type of gearbox offers several advantages over conventional gearboxes. These include high efficiency, low backlash, and high overload protection.
Getting the correct positioning accuracy from a gearbox also involves choosing a supplier that knows what it is doing. The best vendors are those who have experience with the product, offer a wide variety, and provide support and service to ensure the product is installed and maintained correctly. Another consideration is the manufacturer’s warranty. A reputable manufacturer will offer warranties for the gearbox. The aforementioned factors will ensure that your investment in a cycloidal gearbox pays off for years to come.
Getting the correct positioning accuracy from your cycloidal gearbox involves choosing a manufacturer that specializes in this type of product. This is particularly true if you are involved in robotics, automated painting, or any other industrial process that requires the best possible accuracy. A good manufacturer will offer the latest technology, and have the expertise to help you find the best solution for your application. This will ensure your product is a success from start to finish.helical gearbox

Size

Choosing the right size of cycloidal gearbox is important for its efficient operation. However, it is not a simple task. The process involves complex machining and requires the creation of many parts. There are different sizes of cycloidal gearboxes, and a few basic rules of thumb can help you choose the right size.
The first rule of thumb for choosing the right size of cycloidal gearboxes is to use a gearbox with the same diameter of the input shaft. This means that the gearbox must be at least 5mm thick. The cycloid will also require a base and a bearing to hold the driveshaft in place. The base should be large enough to house the pins. The bearing must be the same size as the input shaft.
The next rule of thumb is to have a hole in the cycloid for the output shaft. In this way, the output will be back-drivable and has low backlash. There should be at least four to six output holes. The size of the holes should be such that the centerline of the cycloid is equal to the size of the center of the bearing.
Using a Desmos graph, you can then create the gear parameters. The number of pins should be equal to the number of teeth in the cycloidal gear, and the size of the pins should be twice the size of the gear. The radius of the pins should be equal to the value of C from Desmos, and the size of the pin circle should be equal to the R value.
The final rule of thumb is to ensure that the cycloid has no sharp edges or discontinuities. It should also have a smooth line.
China Gpg Gpb Transmission Reducer Gearbox High Precision Planetary Gearhead with Cheap Price     cycloidal gear reducer designChina Gpg Gpb Transmission Reducer Gearbox High Precision Planetary Gearhead with Cheap Price     cycloidal gear reducer design
editor by czh 2023-01-03

China Automatic Power Transmission Reducer Precision Planetary Gearbox for Gear Motors cycloidal drive generator

Merchandise Description

TaiBang Motor Sector Group Co., Ltd.

The major items is induction motor, reversible motor, DC brush equipment motor, DC brushless equipment motor, CH/CV big equipment motors, Planetary equipment motor ,Worm equipment motor etc, which used broadly in a variety of fields of producing pipelining, transportation, foods, drugs, printing, fabric, packing, workplace, equipment, entertainment and many others, and is the preferred and matched solution for automatic machine. 

Design Instruction

GB090-ten-P2

GB 090 571 P2
Reducer Collection Code Exterior Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:Large Precision Right Angle Square Flange Output

GE:Large Precision Spherical Flange Output

GER:Higher Precision Correct Spherical Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
a hundred and fifty five:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
a hundred and fifteen:115x115mm
142:142x142mm
one hundred eighty:180x180mm
220:220x220mm
571 means 1:10 P0:Substantial Precision Backlash

P1:Precison Backlash

P2:Common Backlash

Primary Technological Functionality
 

Merchandise Number of phase Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 three .03 .16   .61   3.twenty five nine.21 28.ninety eight 69.61
4 .03 .14   .48   two.seventy four 7.54 23.67 54.37
5 .03 .13   .forty seven   2.71 7.42 23.29 fifty three.27
six .03 .thirteen   .45   two.65 seven.25 22.75 51.72
seven .03 .thirteen   .forty five   2.62 seven.14 22.48 50.97
eight .03 .thirteen   .forty four   2.58 seven.07 22.59 50.eighty four
nine .03 .13   .forty four   2.57 seven.04 22.53 50.sixty three
10 .03 .thirteen   .forty four   2.fifty seven 7.03 22.51 fifty.56
2 fifteen .03 .03 .thirteen .13 .forty seven .47 two.seventy one seven.42 23.29
twenty .03 .03 .13 .13 .forty seven .forty seven 2.seventy one 7.42 23.29
twenty five .03 .03 .13 .13 .47 .47 2.seventy one 7.forty two 23.29
thirty .03 .03 .13 .thirteen .forty seven .forty seven 2.seventy one seven.forty two 23.29
35 .03 .03 .thirteen .thirteen .forty seven .47 2.seventy one seven.forty two 23.29
forty .03 .03 .thirteen .13 .forty seven .47 two.seventy one 7.42 23.29
45 .03 .03 .13 .thirteen .forty seven .forty seven two.seventy one seven.forty two 23.29
50 .03 .03 .thirteen .13 .44 .forty four 2.57 seven.03 22.51
sixty .03 .03 .13 .thirteen .44 .44 2.57 seven.03 22.fifty one
70 .03 .03 .thirteen .thirteen .44 .44 two.57 seven.03 22.51
eighty .03 .03 .13 .thirteen .44 .forty four two.57 seven.03 22.fifty one
90 .03 .03 .thirteen .thirteen .44 .44 2.fifty seven seven.03 22.fifty one
a hundred .03 .03 .13 .13 .44 .forty four 2.57 7.03 22.51

 

Item Number of phase GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 one       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
two           ≤3 ≤3 ≤3 ≤3
Precision P1 one ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
two ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) one 3 7 seven 14 fourteen 25 50 145 225
2 three seven seven fourteen fourteen twenty five fifty one hundred forty five 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated enter velocity(rpm) 1,two 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max enter pace(rpm) 1,two 10000 ten thousand ten thousand 8000 8000 8000 6000 6000 4000

 Noise test standard:Distance 1m,no load.Calculated with an enter speed 3000rpm 

 

US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000
US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

The Cyclonoidal Gearbox

Basically, the cycloidal gearbox is a gearbox that uses a cycloidal motion to perform its rotational movement. It is a very simple and efficient design that can be used in a variety of applications. A cycloidal gearbox is often used in applications that require the movement of heavy loads. It has several advantages over the planetary gearbox, including its ability to be able to handle higher loads and higher speeds.helical gearbox

Dynamic and inertial effects of a cycloidal gearbox

Several studies have been conducted on the dynamic and inertial effects of a cycloidal gearbox. Some of them focus on operating principles, while others focus on the mathematical model of the gearbox. This paper examines the mathematical model of a cycloidal gearbox, and compares its performance with the real-world measurements. It is important to have a proper mathematical model to design and control a cycloidal gearbox. A cycloidal gearbox is a two-stage gearbox with a cycloid disc and a ring gear that revolves around its own axis.
The mathematical model is made up of more than 1.6 million elements. Each gear pair is represented by a reduced model with 500 eigenmodes. The eigenfrequency for the spur gear is 70 kHz. The modally reduced model is a good fit for the cycloidal gearbox.
The mathematical model is validated using ABAQUS software. A cycloid disc was discretized to produce a very fine model. It requires 400 element points per tooth. It was also verified using static FEA. This model was then used to model the stiction of the gears in all quadrants. This is a new approach to modelling stiction in a cycloidal gearbox. It has been shown to produce results comparable to those of the EMBS model. The results are also matched by the elastic multibody simulation model. This is a good fit for the contact forces and magnitude of the cycloid gear disc. It was also found that the transmission accuracy between the cycloid gear disc and the ring gear is about 98.5%. However, this value is lower than the transmission accuracy of the ring gear pair. The transmission error of the corrected model is about 0.3%. The transmission accuracy is less because of the lower amount of elastic deformation on the tooth flanks.
It is important to note that the most accurate contact forces for each tooth of a cycloid gearbox are not smooth. The contact force on a single tooth starts with a linear rise and then ends with a sharp drop. It is not as smooth as the contact force on a point contact, which is why it has been compared to the contact force on an ellipse contact. However, the contact on an ellipse contact is still relatively small, and the EMBS model is not able to capture this.
The FE model for the cycloid disc is about 1.6 million elements. The most important part of the FE model is the discretization of the cycloid disc. It is very important to do the discretization of the cycloid gear disc very carefully because of the high degree of vibration that it experiences. The cycloid disc has to be discretized finely so that the results are comparable to those of a static FEA. It has to be the most accurate model possible in order to be able to accurately simulate the contact forces between the cycloid disc and the ring gear.helical gearbox

Kinematics of a cycloidal drive

Using an arbitrary coordinate system, we can observe the motion of components in a cycloidal gearbox. We observe that the cycloidal disc rotates around fixed pins in a circle, while the follower shaft rotates around the eccentric cam. In addition, we see that the input shaft is mounted eccentrically to the rolling-element bearing.
We also observe that the cycloidal disc rotates independently around the eccentric bearing, while the follower shaft rotates around an axis of symmetry. We can conclude that the cycloidal disc plays a pivotal role in the kinematics of a cycloidal gearbox.
To calculate the efficiency of the cycloidal reducer, we use a model that is based on the non-linear stiffness of the contacts. In this model, the non-linearity of the contact is governed by the non-linearity of the force and the deformation in the contact. We have shown that the efficiency of the cycloidal reducer increases as the load increases. In addition, the efficiency is dependent on the sliding velocity and the deformations of the normal load. These factors are considered as the key variables to determine the efficiency of the cycloidal drive.
We also consider the efficiency of the cycloidal reducer with the input torque and the input speed. We can calculate the efficiency by dividing the net torque in the ring gear by the output torque. The efficiency can be adjusted to suit different operating conditions. The efficiency of the cycloidal drive is increased as the load increases.
The cycloidal gearbox is a multi-stage gearbox with a small shaft oin and a big shaft. It has 19 teeth and brass washers. The outer discs move in opposition to the middle disc, and are offset by 180 deg. The middle disc is twice as massive as the outer disc. The cycloidal disc has nine lobes that move by one lobe per drive shaft revolution. The number of pins in the disc should be smaller than the number of pins in the surrounding pins.
The input shaft drives an eccentric bearing that is able to transmit the power to the output shaft. In addition, the input shaft applies forces to the cycloidal disk through the intermediate bearing. The cycloidal disk then advances in 360 deg/pivot/roller steps. The output shaft pins then move around in the holes to make the output shaft rotate continuously. The input shaft applies a sinusoidal motion to maintain the constant speed of the base shaft. This sine wave causes small adjustments to the follower shaft. The forces applied to the internal sleeves are a part of the equilibrium mechanism.
In addition, we can observe that the cycloidal drive is capable of transmitting a greater torque than the planetary gear. This is due to the cycloidal gear’s larger axial length and the ring gear’s smaller hole diameter. It is also possible to achieve a positive fit between the fixed ring and the disc, which is achieved by toothing between the fixed ring and the disc. The cycloidal disk is usually designed with a short cycloid to minimize unbalance forces at high speeds.helical gearbox

Comparison with planetary gearboxes

Compared to planetary gearboxes, the cycloidal gearbox has some advantages. These advantages include: low backlash, better overload capacity, a compact design, and the ability to perform in a wide range of applications. The cycloidal gearbox has become popular in the multi-axis robotics market. The gearbox is also increasingly used in first joints and positioners.
A cycloidal gearbox is a gearbox that consists of four basic components: a cycloid disk, an output flange, a ring gear, and a fixed ring. The cycloid disk is driven by an eccentric shaft, which advances in a 360deg/pivot/roller step. The output flange is a fixed pin disc that transmits the power to the output shaft. The ring gear is a fixed ring, and the input shaft is connected to a servomotor.
The cycloidal gearbox is designed to control inertia in highly dynamic situations. These gearboxes are generally used in robotics and positioners, where they are used to position heavy loads. They are also commonly used in a wide range of industrial applications. They have higher torque density and a low backlash, making them ideal for heavy loads.
The output flange is also designed to handle a torque of up to 500 Nm. Its rotational speed is lower than the planet gearbox, but its output torque is much higher. It is designed to be a high-performance gearbox, and it can be used in applications that need high ratios and a high level of torque density. The cycloid gearbox is also less expensive and has less backlash. However, the cycloidal gearbox has disadvantages that should be considered when designing a gearbox. The main problem is vibrations.
Compared to planetary gearboxes, cycloidal gearboxes have a smaller overall size and are less expensive. In addition, the cycloid gearbox has a large reduction ratio in one stage. In general, cycloidal gearboxes have single or two stages, with the third stage being less common. However, the cycloid gearbox is not the only type of gearbox that has this type of configuration. It is also common to find a planetary gearbox with a single stage.
There are several different types of cycloidal gearboxes, and they are often referred to as cycloidal speed reducers. These gearboxes are designed for any industry that uses servos. They are shorter than planetary gearboxes, and they are larger in diameter for the same torque. Some of them are also available with a ratio lower than 30:1.
The cycloid gearbox can be a good choice for applications where there are high rotational speeds and high torque requirements. These gearboxes are also more compact than planetary gearboxes, and are suitable for high-torque applications. In addition, they are more robust and can handle shock loads. They also have low backlash, and a higher level of accuracy and positioning accuracy. They are also used in a wide range of applications, including industrial robotics.
China Automatic Power Transmission Reducer Precision Planetary Gearbox for Gear Motors     cycloidal drive generatorChina Automatic Power Transmission Reducer Precision Planetary Gearbox for Gear Motors     cycloidal drive generator
editor by czh 2023-01-01

China Wholesale Cheap Transmission Machine Housing Unit Servo Hydraulic Planetary Gearbox manufacturer

Item Description

TaiBang Motor Business Team Co., Ltd.

The major products is induction motor, reversible motor, DC brush gear motor, DC brushless equipment motor, CH/CV massive equipment motors, Planetary gear motor ,Worm equipment motor etc, which utilised extensively in different fields of production pipelining, transportation, meals, medicine, printing, cloth, packing, office, apparatus, amusement and many others, and is the preferred and matched item for computerized equipment. 

Product Instruction

GB090-ten-P2

GB 090 571 P2
Reducer Sequence Code External Diameter Reduction Ratio Reducer Backlash
GB:Higher Precision Sq. Flange Output

GBR:Higher Precision Correct Angle Square Flange Output

GE:Large Precision Round Flange Output

GER:Substantial Precision Proper Spherical Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
a hundred and fifty five:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
one hundred fifteen:115x115mm
142:142x142mm
one hundred eighty:180x180mm
220:220x220mm
571 signifies 1:ten P0:Substantial Precision Backlash

P1:Precison Backlash

P2:Common Backlash

Principal Technological Efficiency
 

Merchandise Variety of phase Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 three .03 .16   .61   three.twenty five 9.21 28.ninety eight 69.sixty one
4 .03 .fourteen   .forty eight   2.seventy four 7.54 23.67 fifty four.37
5 .03 .13   .forty seven   2.seventy one seven.42 23.29 53.27
6 .03 .13   .forty five   two.65 seven.twenty five 22.75 fifty one.seventy two
7 .03 .13   .forty five   two.62 7.14 22.48 50.ninety seven
eight .03 .thirteen   .44   2.fifty eight seven.07 22.fifty nine fifty.84
nine .03 .13   .44   2.fifty seven 7.04 22.53 50.63
ten .03 .thirteen   .forty four   two.57 seven.03 22.51 fifty.fifty six
2 fifteen .03 .03 .13 .thirteen .forty seven .47 2.71 7.42 23.29
twenty .03 .03 .thirteen .thirteen .47 .47 2.71 seven.42 23.29
25 .03 .03 .thirteen .13 .47 .forty seven two.seventy one 7.forty two 23.29
30 .03 .03 .thirteen .13 .47 .47 2.71 7.forty two 23.29
35 .03 .03 .thirteen .thirteen .forty seven .forty seven 2.71 seven.forty two 23.29
40 .03 .03 .thirteen .thirteen .47 .47 2.71 7.forty two 23.29
forty five .03 .03 .thirteen .13 .47 .47 2.seventy one seven.forty two 23.29
50 .03 .03 .13 .13 .forty four .forty four two.57 7.03 22.51
60 .03 .03 .thirteen .thirteen .forty four .forty four two.fifty seven seven.03 22.fifty one
70 .03 .03 .thirteen .thirteen .44 .44 2.57 7.03 22.51
80 .03 .03 .13 .13 .forty four .44 2.57 seven.03 22.fifty one
ninety .03 .03 .13 .13 .44 .forty four two.fifty seven seven.03 22.fifty one
100 .03 .03 .thirteen .thirteen .forty four .forty four 2.fifty seven seven.03 22.51

 

Item Variety of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 one       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
two           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 one ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 seven 7 14 fourteen 25 fifty one hundred forty five 225
two three 7 7 14 fourteen twenty five fifty 145 225
Noise(dB) one,two ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated enter speed(rpm) one,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

 Noise take a look at normal:Distance 1m,no load.Measured with an input speed 3000rpm 

 

US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000
US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

Condition Monitoring of Cyclone Gearboxes

Whether you’re considering using a cycloidal gearbox in your home, office, or garage, you’ll want to make sure it’s made of quality material. You also want to make sure it’s designed properly, so it won’t be damaged by vibrations.helical gearbox

Planetary gearboxes

Compared to cycloidal gearboxes, planetary gearboxes are lighter and more compact, but they lack the precision and durability of the former. They are better suited for applications with high torque or speed requirements. For this reason, they are usually used in robotics applications. But, cycloidal gearboxes are still better for some applications, including those involving shock loads.
There are many factors that affect the performance of gearboxes during production. One of these is the number of teeth. In the case of planetary gearboxes, the number of teeth increases with the number of planets. The number of teeth is reduced in cycloidal gearboxes, which results in higher transmission ratios. These gearboxes also have lower breakaway torques, which means that they can be controlled more easily by the user.
A cycloid gearbox is comprised of three main parts: the ring gear, the sun gear, and the input shaft. The ring gear is fixed in the gearbox, while the sun gear transmits the rotation to the planet gears. The input shaft transfers motion to the sun gear, which in turn transmits it to the output shaft. The output shaft has a larger torque than the input shaft.
Cycloid gears have better torsional stiffness, lower wear, and lower Hertzian contact stress. However, they are also larger in size and require highly accurate manufacturing. Cycloid gears can be more difficult to manufacture than involute gears, which require large amounts of precision.
Cycloid gears can offer transmission ratios up to 300:1, and they can do this in a small package. They also have lower wear and friction, which makes them ideal for applications that require a high transmission ratio.
Cycloid gearboxes are usually equipped with a backlash of about one angular minute. This backlash provides the precision and control necessary for accurate movement. They also provide low wear and shock load capacity.
Planetary gearboxes are available in single and two-stage designs, which increase in length as stages are added. In addition to the two stages, they can be equipped with an optional output bearing, which takes up mounting space. In some applications, a third stage is also available.

Involute gears

Generally, involute gears are more complex to manufacture than cycloidal gears. For example, an involute gear tooth profile has a single curve while a cycloidal gear tooth profile has two curves. In addition, the involute curve is not within the base circle.
The involute curve is a very important component of a gear tooth and it can significantly influence the quality of contact meshing between teeth. Various works have been done on the subject, mainly focusing on the operating principles. In addition, the most important characteristic of the double-enveloping cycloid drive is its double contact lines between the meshing tooth pairs.
Cycloid gears are more powerful, less noisy, and last longer than involute gears. They also require less manufacturing operations during production. However, cycloid gears are more expensive than involute gears. Involute gears are more commonly used in linear motions while cycloid gears are used for rotary motions.
Although cycloid gears are more technically advanced, involute gears have the superior quality and are more aesthetically pleasing. Cycloid gears are used in various industrial applications such as pumps and compressors. They are also widely used in the watch industry. Nevertheless, involute gears have not yet replaced cycloid gears in the watch industry.
The cycloid disc has a number of pins around its outer edge, while an involute gear has only a single curve for the teeth. In addition, cycloid gears have a more robust and reliable design. Involute gears, on the other hand, have a cheaper rack cutter and less expensive involute teeth.
The cycloid disc’s transmission accuracy is about 98.5%, while the ring gear’s transmission accuracy is about 96%. The cycloid disc’s rotational velocity has a magnitude of 3 rad/s. A small change in the center distance does not affect the transmission accuracy. However, rotational velocity fluctuation can affect the transmission accuracy.
Cycloid gears also have the cycloid gear disc’s rotational velocity. The disc has N lobes. However, the cycloid gear disc’s transmission accuracy is still not perfect. This is because of the large rotational angles between the lobes. This also makes it difficult to manufacture.helical gearbox

Vibrations

Using modern techniques for vibration diagnostics and data-driven methods, this article presents a new approach to condition monitoring of cycloidal gearboxes. This approach focuses on detecting the root cause of gearbox failure. The article aims to provide a unified approach to gear designers.
A cycloidal gearbox is a high-precision gearbox that is used in heavy-duty machines. It has a large reduction ratio, which makes it necessary to have a very large input speed. Cycloid gears have high accuracy, but they are susceptible to vibration issues. In this article, the authors describe how a cycloidal gearbox works and how vibrations are measured. They also show how this gearbox can be used to detect faults.
The gearbox is used in positioners, multi-axis robots, and heavy-duty machines. The main characteristics of this gearbox are the high accuracy, the overload capacity, and the large reduction ratio.
There is little documentation on vibrations and condition monitoring of cycloidal gearboxes. The authors describe their approach to the problem, using a cycloidal gearbox and a testing bench. Their approach involves measuring the frequency of the gearbox with different input speeds.
The results show a good separation between the healthy and damaged states. Fault frequencies show up in the lower orders of frequencies. Faults can be detected using binning, which eliminates the need for a tachometer. In addition, binning is combined with Principal Component Analysis to determine the state of the gearbox.
This method is compared to traditional techniques. In addition, the results show how binning can be used to calculate the defect frequencies of the bearings. It is also used to determine the frequencies of the components.
The signals from the test bench are acquired using four sensors. These sensors are medium sensitivity 100 mV/g accelerometers. The signals are then processed using different signal processing techniques. The results show that the vibration signals are correlated with the internal motion of the gearbox. This information is used to identify the internal frequency of the transmission.
The frequency analysis of vibration signals is performed in cyclostationary and noncyclostationary conditions. The signals are then analyzed to determine the magnitude of the gear meshing frequency.helical gearbox

Design

Using precision gearboxes, servomotors can now control heavy loads at high speed. Unlike cam indexing devices, cycloidal gears provide extremely accurate positioning and high torque. They also provide excellent torsional stiffness and shock load capacity.
Cycloid gears are specially designed to minimize vibration at high RPM. Unlike involute gears, they are not stacked, which reduces friction and forces experienced by each tooth. In addition, cycloidal gears have lower Hertzian contact stress.
Cycloid gears are often used in multi-axis robots for positioners. They can provide transmission ratios as high as 300:1 in a compact package. They are also used in first joints in heavy machines. However, they require extremely accurate manufacturing. They are also more difficult to produce than involute gears.
A cycloidal gearbox is a type of planetary gearbox. Cycloid gears are specially designed for high gear ratios. They also have the ability to provide a large reduction ratio in a single stage. They are increasingly used in first joints in heavy machines. They are also becoming more common in robotics.
In order to achieve a large reduction ratio, the input speed of the gear must be very high. Generally, the input speed is between 500 rpm and 4500 rpm. However, in some cases, the input speed may be lower.
A cycloid is formed by rolling a rolling circle on a base circle. The ratio between the rolling circle diameter and the base circle diameter determines the shape of the cycloid. A hypocycloid is formed by rolling primarily on the inside of the base circle, while an epicycloid is formed by rolling primarily on the outside of the base circle.
Cycloid gears have a very small backlash, which minimizes the forces experienced by each tooth. These gears also have a good torsional stiffness, low friction, and shock load capacity. They also provide the best positioning accuracy.
The cycloidal gearbox was designed and built at Radom University. The design was based on three different cycloidal gears. The first pair had the external profile at the nominal dimension, while the second pair had the profile minus tolerance. The load plate had threaded screw holes arranged 15 mm away from the center.
China Wholesale Cheap Transmission Machine Housing Unit Servo Hydraulic Planetary Gearbox     manufacturer China Wholesale Cheap Transmission Machine Housing Unit Servo Hydraulic Planetary Gearbox     manufacturer
editor by czh 2022-12-31

China Planetary Gear Box Vertical Type Gpg Auxiliary Transmission Fast Brushless Motor with Gearbox Manufacture cycloidal gear drive

Product Description

TaiBang Motor Industry Team Co., Ltd.

The primary merchandise is induction motor, reversible motor, DC brush gear motor, DC brushless equipment motor, CH/CV large equipment motors, Planetary gear motor ,Worm gear motor etc, which used commonly in numerous fields of manufacturing pipelining, transportation, foods, medication, printing, material, packing, place of work, equipment, entertainment and so on, and is the preferred and matched solution for automated device. 

Product Instruction

GB090-10-P2

GB 090 571 P2
Reducer Collection Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Sq. Flange Output

GBR:Higher Precision Appropriate Angle Square Flange Output

GE:Large Precision Spherical Flange Output

GER:Higher Precision Correct Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
one hundred twenty:ø120mm
a hundred and fifty five:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
one hundred fifteen:115x115mm
142:142x142mm
a hundred and eighty:180x180mm
220:220x220mm
571 indicates 1:10 P0:Substantial Precision Backlash

P1:Precison Backlash

P2:Common Backlash

Principal Technological Functionality
 

Merchandise Variety of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 three .03 .16   .sixty one   3.twenty five 9.21 28.98 69.61
4 .03 .14   .forty eight   two.74 7.fifty four 23.sixty seven 54.37
5 .03 .thirteen   .forty seven   two.seventy one 7.forty two 23.29 fifty three.27
6 .03 .13   .forty five   2.sixty five 7.twenty five 22.seventy five 51.seventy two
seven .03 .thirteen   .45   two.62 seven.fourteen 22.forty eight 50.97
8 .03 .thirteen   .forty four   two.fifty eight seven.07 22.59 fifty.84
9 .03 .thirteen   .44   2.fifty seven 7.04 22.53 50.63
10 .03 .thirteen   .44   two.fifty seven 7.03 22.fifty one 50.fifty six
2 15 .03 .03 .13 .thirteen .47 .forty seven 2.seventy one seven.42 23.29
20 .03 .03 .13 .thirteen .forty seven .forty seven 2.71 7.forty two 23.29
twenty five .03 .03 .thirteen .thirteen .forty seven .47 two.71 seven.42 23.29
thirty .03 .03 .thirteen .13 .47 .47 2.seventy one 7.42 23.29
35 .03 .03 .13 .13 .forty seven .forty seven two.seventy one seven.forty two 23.29
forty .03 .03 .13 .13 .47 .forty seven 2.71 seven.forty two 23.29
45 .03 .03 .13 .13 .47 .forty seven 2.71 seven.42 23.29
fifty .03 .03 .thirteen .thirteen .forty four .forty four two.fifty seven 7.03 22.51
60 .03 .03 .thirteen .13 .forty four .forty four two.fifty seven 7.03 22.fifty one
70 .03 .03 .thirteen .13 .forty four .44 two.fifty seven seven.03 22.fifty one
80 .03 .03 .thirteen .13 .44 .44 two.fifty seven 7.03 22.51
90 .03 .03 .thirteen .13 .44 .forty four 2.57 seven.03 22.fifty one
100 .03 .03 .thirteen .thirteen .forty four .forty four 2.fifty seven seven.03 22.51

 

Item Variety of phase GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 one ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
two ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) one 3 seven seven 14 fourteen twenty five fifty a hundred forty five 225
two 3 seven 7 14 14 twenty five fifty 145 225
Noise(dB) one,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated enter speed(rpm) 1,two 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max enter velocity(rpm) one,2 ten thousand ten thousand ten thousand 8000 8000 8000 6000 6000 4000

 Noise examination standard:Length 1m,no load.Calculated with an input velocity 3000rpm 

 

US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000
US $50
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GB 090 010 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
010 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

###

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

###

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

The Advantages of Using a Cyclone Gearbox

Using a cycloidal gearbox to drive an input shaft is a very effective way to reduce the speed of a machine. It does this by reducing the speed of the input shaft by a predetermined ratio. It is capable of very high ratios in relatively small sizes.helical gearbox

Transmission ratio

Whether you’re building a marine propulsion system or a pump for the oil and gas industry, there are certain advantages to using cycloidal gearboxes. Compared to other gearbox types, they’re shorter and have better torque density. These gearboxes also offer the best weight and positioning accuracy.
The basic design of a cycloidal gearbox is similar to that of a planetary gearbox. The main difference is in the profile of the gear teeth.
Cycloid gears have less tooth flank wear and lower Hertzian contact stress. They also have lower friction and torsional stiffness. These advantages make them ideal for applications that involve heavy loads or high-speed drives. They’re also good for high gear ratios.
In a cycloidal gearbox, the input shaft drives an eccentric bearing, while the output shaft drives the cycloidal disc. The cycloidal disc rotates around a fixed ring, and the pins of the ring gear engage the holes in the disc. The pins then drive the output shaft as the disc rotates.
Cycloid gears are ideal for applications that require high gear ratios and low friction. They’re also good for applications that require high torsional stiffness and shock load resistance. They’re also suitable for applications that require a compact design and low backlash.
The transmission ratio of a cycloidal gearbox is determined by the number of lobes on the cycloidal disc. The n=n design of the cycloidal disc moves one lobe per revolution of the input shaft.
Cycloid gears can be manufactured to reduce the gear ratio from 30:1 to 300:1. These gears are suitable for high-end applications, especially in the automation industry. They also offer the best positioning accuracy and backlash. However, they require special manufacturing processes and require non-standard characteristics.

Compressive force

Compared with conventional gearboxes, the cycloidal gearbox has a unique set of kinematics. It has an eccentric bearing in a rotating frame, which drives the cycloidal disc. It is characterized by low backlash and torsional stiffness, which enables geared motion.
In this study, the effects of design parameters were investigated to develop the optimal design of a cycloidal reducer. Three main rolling nodes were studied: a cycloidal disc, an outer race and the input shaft. These were used to analyze the motion related dynamic forces, which can be used to calculate stresses and strains. The gear mesh frequency was calculated using a formula, which incorporated a correction factor for the rotating frame of the outer race.
A three-dimensional finite element analysis (FEA) study was conducted to evaluate the cycloidal disc. The effects of the size of the holes on the disc’s induced stresses were investigated. The study also looked at the torque ripple of a cycloidal drive.
The authors of this study also explored backlash distribution in the output mechanism, which took into account the machining deviations and structure and geometry of the output mechanism. The study also looked at the relative efficiency of a cycloidal reducer, which was based on a single disc cycloidal reducer with a one-tooth difference.
The authors of this study were able to deduce the contact stress of the cycloidal disc, which is calculated using the material-based contact stiffness. This can be used to determine accurate contact stresses in a cycloidal gearbox.
It is important to know the ratios needed for calculation of the bearing rate. This can be calculated using the formula f = k (S x R) where S is the volume of the element, R is the mass, k is the contact stiffness and f is the force vector.helical gearbox

Rotational direction

Unlike the conventional ring gear which has a single axis of rotation, cycloidal gearbox has three rotational axes which are parallel and are located in a single plane. A cycloidal gearbox has excellent torsional stiffness and shock load capacity. It also ensures constant angular velocity, and is used in high-speed gearbox applications.
A cycloidal gearbox consists of an input shaft, a drive member and a cycloidal disc. The disc rotates in one direction, while the input shaft rotates in the opposite direction. The input shaft eccentrically mounts to the drive member. The cycloidal disc meshes with the ring-gear housing, and the rotational motion of the cycloidal disc is transferred to the output shaft.
To calculate the rotational direction of a cycloidal gearbox, the cycloid must have the correct angular orientation and the centerline of the cycloid should be aligned with the center of the output hole. The cycloid’s shortest length should be equal to the radius of the pin circle. The cycloid’s largest radius should be the size of the bearing’s exterior diameter.
A single-stage gear will not have much space to work with, so you’ll need a multistage gear to maximize space. This is also the reason that cycloid gears are usually designed with a shortened cycloid.
To calculate the most efficient tooth profile for a cycloidal gear, a new method was devised. This method uses a mathematical model that uses the cycloid’s rotational direction and a few other geometric parameters. Using a piecewise function related to the distribution of pressure angle, the cycloid’s most efficient profile is determined. It is then superimposed on the theoretical profile. The new method is much more flexible than the conventional method, and can adapt to changing trends of the cycloidal profile.

Design

Several designs of cycloidal gearboxes have been developed. These gearboxes have a large reduction ratio in one stage. They are mainly used for heavy machines. They provide good torsional stiffness and shock load capacity. However, they also have vibrations at high RPM. Several studies have been conducted to find a solution to this problem.
A cycloidal gearbox is designed by calculating the reduction ratio of a mechanism. This ratio is obtained by the size of the input speed. This is then multiplied by the reduction ratio of the gear profile.
The most important factor in the design of a cycloidal gearbox is the load distribution along the width of the gear. Using this as a design criterion, the amplitude of vibration can be reduced. This will ensure that the gearbox is working properly. In order to generate proper mating conditions, the trochoidal profile on the cycloidal disc periphery must be defined accurately.
One of the most common forms of cycloidal gears is circular arc toothing. This is the most common type of toothing used today.
Another form of gear is the hypocycloid. This form requires the rolling circle diameter to be equal to half the base circle diameter. Another special case is the point tooth form. This form is also called clock toothing.
In order to make this gear profile work, the initial point of contact must remain fixed to the edge of the rolling disk. This will generate the hypocycloid curve. The curve is traced from this initial point.
To investigate this gear profile, the authors used a 3D finite element analysis. They used the mathematical model of gear manufacturing that included kinematics parameters, output moment calculations, and machining steps. The resulting design eliminated backlash.helical gearbox

Sizing and selection

Choosing a gearbox can be a complex task. There are many factors that need to be taken into account. You need to determine the type of application, the required speed, the load, and the ratio of the gearbox. By gaining this information, you can find a solution that works best for you.
The first thing you need to do is find the proper size. There are several sizing programs available to help you determine the best gearbox for your application. You can start by drawing a cycloidal gear to help you create the part.
During sizing, it is important to consider the environment. Shock loads, environmental conditions, and ambient temperatures can increase wear on the gear teeth. The temperature also has a significant impact on lubrication viscosities and seal materials.
You also need to consider the input and output speed. This is because the input speed will change your gearbox ratio calculations. If you exceed the input speed, you can damage the seals and cause premature wear on the shaft bearings.
Another important aspect of sizing is the service factor. This factor determines the amount of torque the gearbox can handle. The service factor can be as low as 1.4, which is sufficient for most industrial applications. However, high shock loads and impact loads will require higher service factors. Failure to account for these factors can lead to broken shafts and damaged bearings.
The output style is also important. You need to determine if you want a keyless or keyed hollow bore, as well as if you need an output flange. If you choose a keyless hollow bore, you will need to select a seal material that can withstand the higher temperatures.
China Planetary Gear Box Vertical Type Gpg Auxiliary Transmission Fast Brushless Motor with Gearbox Manufacture     cycloidal gear driveChina Planetary Gear Box Vertical Type Gpg Auxiliary Transmission Fast Brushless Motor with Gearbox Manufacture     cycloidal gear drive
editor by czh 2022-12-29

China Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox with Hot selling

Merchandise Description

Xb Bwd/Xwd CZPT Transmission Gear Bins Servo Motor Sumitomo Generate Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox

 

 

Attribute:
–Substantial velocity ratio and substantial effectiveness single-stage transmission can achieve a deceleration ratio of 1:87, and the effectiveness is more than 90%. If multi-stage transmission is employed, the deceleration ratio will be bigger.
–Since planetary transmission theory is adopted, the enter shaft and output shaft are on the exact same axis line, so that the equipment product can get the smallest possible measurement.
–The quantity of meshing enamel of cycloidal needle enamel with clean operating sound and lower cycloidal sounds is much more, the overlap coefficient is bigger, and the system of balancing device areas tends to make the vibration and voice restricted to a bare minimum.
–Trustworthy use and lengthy provider daily life since the major parts are produced of large carbon chromium steel, higher energy is attained by quenching (HRC58-62), and rolling friction is utilised in some transmission contacts, so the service existence is long.

 

Remember to click on below for more varieties!
 

 

Our Companies

With all our actions DNV-ISO 9001, SGS -licensed, we stand for leading-high quality services. Entrusting your gearboxes to the care of our Solutions.

Aid defend your gearbox from dress in and grinding, SGR gearbox converts torque reliably and effi­ciently.
We customize our CZPT planetary gear units, double enveloping worm gearbox, helical gear motor, modular style helical gear unit, worm gearbox, cycloidal gearbox and many others to fit your application and satisfy your needs. 

These attributes empower a dependable and secure services daily life of above two hundred 000 operational hours. 

Our customers have been placing their trust in CZPT gear units since 1997. Much more than 500 000 gear models of our gearbox are in use reliably about the world, in several situations below quite severe conditions.

 

Connected Goods

 

For much more reducers and mechanical add-ons, make sure you simply click here to view

 

 

 

US $10-800
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Stepless

###

Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox
Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox
US $10-800
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Stepless

###

Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox
Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox

How to Use a Cyclone Gearbox

Often, a cycloidal gearbox is used in order to achieve a torque transfer from a motor or pump. This type of gearbox is often a common choice as it has a number of advantages over a regular gearbox. Its main advantage is that it is easy to make, which means that it can be incorporated into a variety of applications. However, if you want to use a cycloidal gearbox, there are a few things that you need to know. These include the operation principle, the structure and the dynamic and inertial effects that come with it.helical gearbox

Dynamic and inertial effects

Several studies have been carried out on the static and dynamic properties of cycloidal gears. The study of these effects is beneficial in assisting optimal design of cycloidal speed reducers.
In this paper, the dynamic and inertial effects of a two-stage cycloidal speed reducer have been investigated using the CZPT program package. Moreover, a new model for cycloidal reducers based on non-linear contact dynamics has been developed. The new model aims to predict several operational conditions.
The normal excitation contact force for the cycloid discs of the first and second stage is very similar. However, the total deformation at the contact point is different. This effect is mainly due to the system’s own oscillations. The cycloid discs of the second stage turn around the ring gear roller with a 180deg angle. This angle is a significant contributor to the torque loads. The total excitation force on the cycloid discs of first and second stage is 1848 N and 2068.7 N, respectively.
In order to analyze the contact stress, different gear profiles were investigated. The mesh density was considered as an important design criterion. It was found that a bigger hole reduces the material content of the cycloidal disc and results in more stresses.
Moreover, it is possible to reduce the contact forces in a more efficient manner by changing the geometric parameters. This can be done by mesh refinement along the disc width. The cycloidal disc has the greatest influence on the output results.
The efficiency of a cycloidal drive increases with the increase in load. The efficiency of a cycloidal reducer also depends on the eccentricity of the input shaft and the cycloidal plate. The efficiency curve for small loads is linear. However, for the larger loads, the efficiency curve becomes more non-linear. This is because the stiffness of the cycloid reducer increases as the load increases.

Structure

Despite the fact that it looks like a complicated engineering puzzle, the construction of a cycloidal gearbox is actually quite simple. The key elements are the base, the load plate and the thrust bearing. All these elements work together to create a stable, compact gearbox.
The base is a circular section with several cylindrical pins around its outer edge. The pins are fixed on a fixed ring that holds them in a circular path. The ring serves as a reference circle. The circle’s size is approximately 5mm in diameter.
The load plate is a series of threaded screw holes. These are arranged 15mm away from the center. These are used to anchor external structures. The load plate must be rotated around the X and Y axis.
The thrust bearing is placed on top of the load plate. The bearing is made of an internal diameter of 35mm and an external diameter of 52mm. It is used to allow rotation around the Z axis.
The cycloidal disc is the centerpiece of the cycloidal gearbox. The disc has holes for the pins that drive the output shaft. The holes are larger than those used in output roller pins. The disc also has a reduced eccentricity.
The pins are attached to the cycloidal disc by rolling pins. The pins are made of a material that provides mechanical support for the drive during high-torque situations. The pins have a 9mm external diameter. The disc has a number of lobes and is rotated by one lobe per shaft revolution.
The cycloidal gearbox also has a top cover that helps keep the components together. The cover has a pocket for tools. The top cover also has threads that screw into the casing.helical gearbox

Operation principle

Among many types of gear transmissions, cycloidal gearboxes are used in heavy machinery and multi-axis robots. They are highly effective, compact and capable of high ratios. In addition, they have an overload capability.
Cycloid disks are driven by eccentric shafts that rotate around fixed ring pins. Roller pins of the pin disc engage with holes in the cycloidal disc. These roller pins drive the pin disc and the pin disc transfers the motion to the output shaft.
Unlike conventional gear drives, cycloidal drives have low backlash and high torsional stiffness. They are ideally suited to heavy loads and all drive technologies. The lower mass and compact design of the cycloidal disk also contributes to its high efficiency and positioning accuracy.
The cycloidal disc plays a central role in the gearbox kinematics. It rotates around a fixed ring in a circle. When the disc is pushed against the ring gear, the pins engage with the disc and the roller pins rotate around the pins. This rotating motion generates vibration, which travels through the driven shafts.
Cycloid discs are typically designed with a short cycloid, so that the eccentricity is minimized. This reduces unbalance forces at high speeds. Ideally, the number of lobes on the cycloid is smaller than the number of surrounding pins. This reduces the amount of Hertzian contact stress.
Unlike planetary gears, cycloidal gears have high accuracy and are capable of withstanding shock loads. They also experience low friction and less wear on tooth flanks. They also have higher efficiency and load capacity.
Cycloid gears are generally more difficult to manufacture than involute gears. Cycloid gears are not suitable for stacking gear stages. They require extreme accuracy for manufacturing. However, their smaller size and low backlash, high torsional stiffness, and low vibration make them ideal for use in heavy machines.

Involute gear tooth profile

Almost all gears are manufactured with an involute gear tooth profile. Cycloid gears are also produced with this profile. Compared with involute gears, cycloid gears are stronger and can transmit more power. However, they can also be more difficult to manufacture. This makes them costlier.
The involute gear tooth profile is a smooth curve. It is derived from the involute curve of a circle. A tangent to the base circle is the normal at any point of an involute.
This curve has properties that allow the involute gear teeth to transfer motion in perpendicular direction. It is also the path traced by the end of the string unwrapping from a cylinder.
An involute profile has the advantage of being easy to manufacture. It also allows for smooth meshing despite misalignment of the centre distance. This profile is also preferred over a cycloid tooth profile, but it is not the best in every regard.
Cycloid gear teeth are also made of two curves. Unlike involute teeth, cycloid gear teeth have a consistent radius. Cycloid gears are less likely to produce noise. But they are also more expensive to manufacture.
Involute teeth are easier to manufacture because they have only one curve. Cycloid gears can also be made with a rack type cutter. This makes them cheaper to manufacture. However, they require an expert design. They can also be manufactured with a gear shaper that includes a pinion cutter.
The tooth profiles that satisfy the law of gear-tooth action are sometimes called conjugate profiles. The involute profile is the most common of these. It allows for constant torque transmission.helical gearbox

Backlash

Typically, cycloidal drives provide a high ratio of transmission with no backlash. This is because the cycloid disc is driven by an eccentric shaft. During rotation, the cycloid disc rotates around a fixed ring. This ring also rotates independently of the center of gravity.
The cycloid disc is typically shortened to reduce the eccentricity. This helps to minimize the unbalance forces that may occur at high speeds. The cycloid also offers a larger gear ratio than traditional gears. This provides a better positional accuracy.
Cycloid drives also have a high torsional stiffness. This provides greater torsional resilience and shock load capabilities. This is important for a number of reasons, such as in heavy-duty applications.
Cycloid drives also have lower mass. These benefits make them ideally suited for all drive technologies. The design also allows for higher torsional stiffness and service life. These drives also have a much smaller profile.
Cycloid drives are also used to reduce speed. Because of the high torsional stiffness of the cycloid, they also have high positioning accuracy.
Cycloid drives are well-suited to a variety of applications, including electric motors, generators, and pump motors. They are also highly resistant to shock loads, which is important in a variety of applications. This design is ideal for applications that require a large transmission ratio in a compact design.
Cycloid drives also have the advantage of minimizing the clearance between the mating components. This helps to eliminate interference and ensure a positive fit. This is particularly important in gearboxes. It also allows for the use of a load cell and potentiometer to determine the backlash of the gearbox.
China Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox     with Hot sellingChina Xb Bwd/Xwd FAW Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox     with Hot selling
editor by czh 2022-12-15

China Transmission Geared Motor Unit Wp Nmrv Swl Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox supplier

Product Description

Transmission Geared Motor Unit Wp Nmrv Swl Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox

Features:
1. Light in weight and non-rusting
2. Smooth in running, can work a long time in dreadful conditions
3. High efficiency, low noise
4. Good-looking in appearance, durable in service life, and small in volume

Product photo:

Specification for worm gearbox:

Model 571 ~ 150
Power 0.06kw ~ 15kw
Input speed 750rpm ~ 2000rpm
Reduction ratio 1/5 ~ 1/100
Input motor AC (1 phase or 3 phase) / DC / BLDC / Stepper / Servo
Output shaft Solid shaft / Hollow shaft / Output flange…
Dimension standard Metric size / Inch size
Material of housing die-cast aluminum / Cast iron / Stainless steel
Accessories Flange / Solid shaft / Torque arm / Cover …

FAQ
Q: Can you make the gearbox with customization?
A: Yes, we can customize per your request, like flange, shaft, configuration, material, etc.

Q: Do you provide samples?
A: Yes. The sample is available for testing.

Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.

Q: What’s your lead time?
A: Standard products need 5-30days, a bit longer for customized products.

Q: Do you provide technical support?
A: Yes. Our company have design and development team, we can provide technical support if you
need.

Q: How to ship to us?
A: It is available by air, or by sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with a different currency, including USD, EUR, RMB, etc.

Q: How can I know the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours.

 

US $15-25
/ Piece
|
1,000 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right Angle

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Blue or Silver

###

Customization:

###

Model 025 ~ 150
Power 0.06kw ~ 15kw
Input speed 750rpm ~ 2000rpm
Reduction ratio 1/5 ~ 1/100
Input motor AC (1 phase or 3 phase) / DC / BLDC / Stepper / Servo
Output shaft Solid shaft / Hollow shaft / Output flange…
Dimension standard Metric size / Inch size
Material of housing die-cast aluminum / Cast iron / Stainless steel
Accessories Flange / Solid shaft / Torque arm / Cover …
US $15-25
/ Piece
|
1,000 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right Angle

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Blue or Silver

###

Customization:

###

Model 025 ~ 150
Power 0.06kw ~ 15kw
Input speed 750rpm ~ 2000rpm
Reduction ratio 1/5 ~ 1/100
Input motor AC (1 phase or 3 phase) / DC / BLDC / Stepper / Servo
Output shaft Solid shaft / Hollow shaft / Output flange…
Dimension standard Metric size / Inch size
Material of housing die-cast aluminum / Cast iron / Stainless steel
Accessories Flange / Solid shaft / Torque arm / Cover …

Types of Gearboxes Used in Wind Turbines

Many manufacturers of wind turbines have chosen different solutions for the drive train of the turbines. Most prefer gearboxes because of their durability. These have several design features that make them well suited to shocks, stresses and wear. Regardless of the type of gearbox used, continuous maintenance and monitoring can extend the lifespan of these machines. Performing these tasks regularly can help detect and resolve any problems before they become serious. Here are some of the problems associated with gearboxes.
gearbox

Coaxial helical gearbox

The R series helical inline gearbox is a high-quality speed reducer for heavy-duty industrial applications. These units are designed with increased power density in mind and are equipped with various cooling options. High-grade seals and lubricants help to increase efficiency and minimize thermal loading. They are ATEX-compliant. Their reversible modules are an excellent choice for high-speed applications, such as compressors, compressor blowers, and pumps.
The normal module set of helical gearbox is manufactured using the same tooth-cutting techniques as spur gears. This allows the production of higher-quality, more economical, and more compact helical gears. Although the performance of helical gears is lower than spur gears, they are durable and capable of transferring motion and power between two shafts. And because they are able to handle a much greater load, they are preferred for heavy-duty applications.
The main tooth form of a helical gearbox presents fixed velocity ratios, even if the center gap is not completely set. This requirement is sometimes referred to as the fundamental rule of gearing. A helical gearbox is similar to a set of paper spur gears, with the exception that the sections must stagger in opposite directions. There are two kinds of helical gears for parallel shafts: left-handed and right-handed.
The Industrial Gearbox market is segmented based on product type, application, and geography. The report analyzes the competitive scenario by segmenting the market by region, company, and type. Using this information, it estimates market size, revenue, and consumption. The report also features key information about COVID-19 and its impact on the overall industry. And it also provides a competitive landscape with industry-leading players.
Industrial gearboxes are integrated with devices and make automation processes more efficient and reliable. Increasing labor costs, shortage of skilled labor, and the ageing workforce are driving the demand for automation technologies. The industry requires newer and more advanced models and technologies to compete in the global market. You can use Coaxial helical gearbox in a variety of applications. Its benefits are endless. If you are looking for a reliable, high-performance industrial gearbox, CZPT can help you find it.
gearbox

Worm reduction gearbox

As a general rule, larger center distance worm reduction gearboxes are more efficient than smaller ones. Worm gearboxes with 2.6-in. center distances start to lose efficiency as their ratios increase. Larger center distances tend to have higher efficiency than smaller ones. However, this difference may not always be enough to justify the higher investment. Worm gear reducers typically cost less than equivalent helical units.
The use of aluminum for worm reduction gearboxes is a popular choice for those involved in the manufacturing of Packaging Equipment. In addition to being lightweight, aluminum worm reduction gearboxes have high strength and rigidity. Manufacturers recommend this choice because of its high rigidity and durability. While purchasing aluminum worm reduction gearboxes, keep in mind that they are more expensive than steel versions. However, they have a longer lifespan and are highly resistant to wear.
The worm’s helix angle is larger than a helical gear, which allows a much higher gear ratio. In addition, the worm’s body is usually longer in the axial direction than helical gears. Worm reduction gears are often left-handed, and British or Indian standards are usually followed. The worm wheel is made of hardened alloy steel PB2-C, while the gearbox case is made of hardened alloy steel FG 220 or FG 250res.
The worms in a sacrificial system are relatively safe from wear. Instead, the softer wheel is the cause of most wear and tear. The oil analysis report for a sacrificial system shows low iron levels and high copper concentrations. However, if a worm reduction gearbox has a bad reputation, you should consider purchasing a new one. If the worm gears are in good condition, the gearbox is still a viable option for a new or replacement vehicle.
The advantages of a worm reduction gearbox are numerous. The worm gearbox is widely used in industrial settings, where it provides torque and speed reduction to move products. Worm gearboxes are also commonly used in automatic security gates, which will not run in reverse. Most security gates use two separate worm drives to keep the gate in the closed position. There are also many other uses for worm reducers. You can learn more about the benefits of worm gearboxes by reading below.

Stainless steel gearbox

Stainless steel gearboxes offer a number of advantages over standard gearboxes. They match the existing stainless motor design and cost 50 percent more on average. They have stainless output shafts and housings as well as corrosion resistant hardware and a food grade lubricant. Stainless steel gearboxes feature IP 65 sealing, Viton shaft seals at the input and output shafts, and a Buna o-ring between the housings. Stainless steel gearboxes also eliminate flat surfaces and allow for a cylindrical design.
Stainless steel gearboxes are more durable than traditional cast iron or epoxy-painted gearboxes. These gearboxes can withstand repeated washdown operations without damage. They also do not collect particles or bacteria. And because stainless steel does not corrode, stainless steel gearboxes can withstand harsh environments, such as oily or greasy environments. Because stainless steel gearboxes are corrosion-resistant, they require little maintenance. They are also easier to clean and maintain, resulting in fewer replacements and a longer life span for your gearbox.
Stainless steel gearboxes are a great choice for food and other industries that require high hygiene standards. In addition to its durability, stainless steel gearboxes are ideal for applications in environments that require high levels of humidity and water. They are also life-lubricated, and they can be supplied with food-grade oils or water. The CZPT Gears stainless gearbox is a versatile option for a variety of applications.
Stainless steel gearboxes offer superior corrosion protection and can withstand harsh environments. The stainless steel cover, housing, and external hardware ensure superior corrosion protection. If you have questions about the varying benefits of stainless steel gearboxes, contact a CZPT Gear sales representative to learn more about your options. And if you are not sure which type is right for your needs, contact a CZPT Gear sales representative to find the perfect solution for your business.
gearbox

1 speed gearbox

Volkswagen Group Components manufactures the one speed gearbox. The gearbox has a high-performance electric drive motor that produces 310 Nm of torque over a wide speed range. Designed for maximum range, this gearbox uses a single gear for all driving situations. It is extremely quiet, too, and requires precision manufacturing. Volkswagen has also made it available in a reverse-gear configuration with power electronics. Volkswagen’s ID.3 EV’s e-drive motor is a perfect example of this.
The first part of the transmission corresponds to the even and odd gears, while the second part has the straighter gears. A single gear set can change between both modes. An intermediate gear set is also possible. A lastshelf gear can be formed by hydraulically betigte Lamellenkupplungen. Both types of gears can be exchanged between partial transmissions. The invention may furthermore include a transmission with the same gear ratios as the first part of the transmission.
Another variation of the one speed gearbox is the CVT. This type of gearbox has only one drive unit, which means it does not require a clutch or brake. Its power is derived from the torque generated by the Internal Combustion Engine at a particular speed. The engine cannot sustain such high torque levels above 5500 RPM, which will reduce the MPG. Also, raising the RPM will reduce the acceleration, and in severe cases may lead to an engine crash.
As the number of applications for a 1 speed gearbox increases, its design and functionality will continue to evolve. Bosch Rexroth has developed its eGFZ gearbox based on customer feedback. They are currently working on various pilot projects and hope to put it into production in the next few years. However, if you want to buy a 1 speed gearbox now, consider the benefits of a first-rate design.

China Transmission Geared Motor Unit Wp Nmrv Swl Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox     supplier China Transmission Geared Motor Unit Wp Nmrv Swl Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox     supplier
editor by czh 2022-11-24

China Aluminum Gear Reductor Iron Housing Transmission Drive Motor Shaft Nmrv Series Reduction Helical Cycloidal Cyclo Planetary Worm Gearboxes Speed Reduce Gearbox with Good quality

Product Description

Aluminum Gear Reductor Iron Housing Transmission Drive Motor Shaft Nmrv Series Reduction Helical Cycloidal Cyclo Planetary Worm Gearboxes Speed reduce Gearbox
 

Features

1. Light in weight and non-rusting
2. Smooth in running, can work a long time in dreadful conditions
3. High efficiency, low noise
4. Good-looking in appearance, durable in service life, and small in volume

 

Product Photos

 

 

Product Description

 

Model 571 ~ 150
Power 0.06kw ~ 15kw
Input speed 750rpm ~ 2000rpm
Reduction ratio 1/5 ~ 1/100
Input motor AC (1 phase or 3 phase) / DC / BLDC / Stepper / Servo
Output shaft Solid shaft / Hollow shaft / Output flange…
Dimension standard Metric size / Inch size
Material of housing die-cast aluminum / Cast iron / Stainless steel
Accessories Flange / Solid shaft / Torque arm / Cover …

 

FAQ

 

Q: Can you make the gearbox with customization?
A: Yes, we can customize per your request, like flange, shaft, configuration, material, etc.

Q: Do you provide samples?
A: Yes. The sample is available for testing.

Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.

Q: What’s your lead time?
A: Standard products need 5-30days, a bit longer for customized products.

Q: Do you provide technical support?
A: Yes. Our company have design and development team, we can provide technical support if you
need.

 

US $15-25
/ Piece
|
1 Piece

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right Angle

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

###

Customization:

###

Model 025 ~ 150
Power 0.06kw ~ 15kw
Input speed 750rpm ~ 2000rpm
Reduction ratio 1/5 ~ 1/100
Input motor AC (1 phase or 3 phase) / DC / BLDC / Stepper / Servo
Output shaft Solid shaft / Hollow shaft / Output flange…
Dimension standard Metric size / Inch size
Material of housing die-cast aluminum / Cast iron / Stainless steel
Accessories Flange / Solid shaft / Torque arm / Cover …
US $15-25
/ Piece
|
1 Piece

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right Angle

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

###

Customization:

###

Model 025 ~ 150
Power 0.06kw ~ 15kw
Input speed 750rpm ~ 2000rpm
Reduction ratio 1/5 ~ 1/100
Input motor AC (1 phase or 3 phase) / DC / BLDC / Stepper / Servo
Output shaft Solid shaft / Hollow shaft / Output flange…
Dimension standard Metric size / Inch size
Material of housing die-cast aluminum / Cast iron / Stainless steel
Accessories Flange / Solid shaft / Torque arm / Cover …

The Parts of a Gearbox

There are many parts of a Gearbox, and this article will help you understand its functions and components. Learn about its maintenance and proper care, and you’ll be on your way to repairing your car. The complexity of a Gearbox also makes it easy to make mistakes. Learn about its functions and components so that you’ll be able to make the best choices possible. Read on to learn more. Then, get your car ready for winter!
gearbox

Components

Gearboxes are fully integrated mechanical components that consist of a series of gears. They also contain shafts, bearings, and a flange to mount a motor. The terms gearhead and gearbox are not often used interchangeably in the motion industry, but they are often synonymous. Gearheads are open gearing assemblies that are installed in a machine frame. Some newer designs, such as battery-powered mobile units, require tighter integration.
The power losses in a gearbox can be divided into no-load and load-dependent losses. The no-load losses originate in the gear pair and the bearings and are proportional to the ratio of shaft speed and torque. The latter is a function of the coefficient of friction and speed. The no-load losses are the most serious, since they represent the largest proportion of the total loss. This is because they increase with speed.
Temperature measurement is another important preventive maintenance practice. The heat generated by the gearbox can damage components. High-temperature oil degrades quickly at high temperatures, which is why the sump oil temperature should be monitored periodically. The maximum temperature for R&O mineral oils is 93degC. However, if the sump oil temperature is more than 200degF, it can cause seal damage, gear and bearing wear, and premature failure of the gearbox.
Regardless of its size, the gearbox is a crucial part of a car’s drivetrain. Whether the car is a sports car, a luxury car, or a farm tractor, the gearbox is an essential component of the vehicle. There are two main types of gearbox: standard and precision. Each has its own advantages and disadvantages. The most important consideration when selecting a gearbox is the torque output.
The main shaft and the clutch shaft are the two major components of a gearbox. The main shaft runs at engine speed and the countershaft may be at a lower speed. In addition to the main shaft, the clutch shaft has a bearing. The gear ratio determines the amount of torque that can be transferred between the countershaft and the main shaft. The drive shaft also has another name: the propeller shaft.
The gears, shafts, and hub/shaft connection are designed according to endurance design standards. Depending on the application, each component must be able to withstand the normal stresses that the system will experience. Oftentimes, the minimum speed range is ten to twenty m/s. However, this range can differ between different transmissions. Generally, the gears and shafts in a gearbox should have an endurance limit that is less than that limit.
The bearings in a gearbox are considered wear parts. While they should be replaced when they wear down, they can be kept in service much longer than their intended L10 life. Using predictive maintenance, manufacturers can determine when to replace the bearing before it damages the gears and other components. For a gearbox to function properly, it must have all the components listed above. And the clutch, which enables the transmission of torque, is considered the most important component.
gearbox

Functions

A gearbox is a fully integrated mechanical component that consists of mating gears. It is enclosed in a housing that houses the shafts, bearings, and flange for motor mounting. The purpose of a gearbox is to increase torque and change the speed of an engine by connecting the two rotating shafts together. A gearbox is generally made up of multiple gears that are linked together using couplings, belts, chains, or hollow shaft connections. When power and torque are held constant, speed and torque are inversely proportional. The speed of a gearbox is determined by the ratio of the gears that are engaged to transmit power.
The gear ratios in a gearbox are the number of steps a motor can take to convert torque into horsepower. The amount of torque required at the wheels depends on the operating conditions. A vehicle needs more torque than its peak torque when it is moving from a standstill. Therefore, the first gear ratio is used to increase torque and move the vehicle forward. To move up a gradient, more torque is required. To maintain momentum, the intermediate gear ratio is used.
As metal-to-metal contact is a common cause of gearbox failure, it is essential to monitor the condition of these components closely. The main focus of the proactive series of tests is abnormal wear and contamination, while the preventative tests focus on oil condition and additive depletion. The AN and ferrous density tests are exceptions to this rule, but they are used more for detecting abnormal additive depletion. In addition, lubrication is critical to the efficiency of gearboxes.
gearbox

Maintenance

Daily maintenance is a critical aspect of the life cycle of a gearbox. During maintenance, you must inspect all gearbox connection parts. Any loose or damaged connection part should be tightened immediately. Oil can be tested using an infrared thermometer and particle counters, spectrometric analysis, or ferrography. You should check for excessive wear and tear, cracks, and oil leaks. If any of these components fail, you should replace them as soon as possible.
Proper analysis of failure patterns is a necessary part of any preventative maintenance program. This analysis will help identify the root cause of gearbox failures, as well as plan for future preventative maintenance. By properly planning preventative maintenance, you can avoid the expense and inconvenience of repairing or replacing a gearbox prematurely. You can even outsource gearbox maintenance to a company whose experts are knowledgeable in this field. The results of the analysis will help you create a more effective preventative maintenance program.
It is important to check the condition of the gearbox oil periodically. The oil should be changed according to its temperature and the hours of operation. The temperature is a significant determinant of the frequency of oil changes. Higher temperatures require more frequent changes, and the level of protection from moisture and water reduces by 75%. At elevated temperatures, the oil’s molecular structure breaks down more quickly, inhibiting the formation of a protective film.
Fortunately, the gear industry has developed innovative technologies and services that can help plant operators reduce their downtime and ensure optimal performance from their industrial gears. Here are 10 steps to ensure that your gearbox continues to serve its purpose. When you are preparing for maintenance, always keep in mind the following tips:
Regular vibration analysis is a vital part of gearbox maintenance. Increased vibration signals impending problems. Visually inspect the internal gears for signs of spiraling and pitting. You can use engineers’ blue to check the contact pattern of gear teeth. If there is a misalignment, bearings or housings are worn and need replacement. Also make sure the breathers remain clean. In dirty applications, this is more difficult to do.
Proper lubrication is another key factor in the life of gearboxes. Proper lubrication prevents failure. The oil must be free of foreign materials and have the proper amount of flow. Proper lubricant selection depends on the type of gear, reduction ratio, and input power. In addition to oil level, the lubricant must be regulated for the size and shape of gears. If not, the lubricant should be changed.
Lack of proper lubrication reduces the strength of other gears. Improper maintenance reduces the life of the transmission. Whether the transmission is overloaded or undersized, excessive vibration can damage the gear. If it is not properly lubricated, it can be damaged beyond repair. Then, the need for replacement gears may arise. However, it is not a time to waste a lot of money and time on repairs.

China Aluminum Gear Reductor Iron Housing Transmission Drive Motor Shaft Nmrv Series Reduction Helical Cycloidal Cyclo Planetary Worm Gearboxes Speed Reduce Gearbox     with Good quality China Aluminum Gear Reductor Iron Housing Transmission Drive Motor Shaft Nmrv Series Reduction Helical Cycloidal Cyclo Planetary Worm Gearboxes Speed Reduce Gearbox     with Good quality
editor by czh

in Kigali Rwanda sales price shop near me near me shop factory supplier Steel Spur Transmission Bevel Gear for Conveyor, Planetary Transmission Gear for Machine manufacturer best Cost Custom Cheap wholesaler

  in Kigali Rwanda  sales   price   shop   near me   near me shop   factory   supplier Steel Spur Transmission Bevel Gear for Conveyor, Planetary Transmission Gear for Machine manufacturer   best   Cost   Custom   Cheap   wholesaler

we source chromed bar and tubes for hydualic and pheumatic cylinders. we are self-assured to supply our clients adaptable and diversified solutions. If you need to have any information or samples, you should make contact with us and you will have our before long reply.
Benefits colon
one period of time Skilled EPTs manufacturer
two periodExperienced in Cooperate with large Businesses
three interval Specialist EPTs Engineering Capability
four periodStable EPTs EPT
five periodReasonable EPTs Prices
six periodSmall EPTs Orders Approved
seven periodContinuous EPTs quality advancements
8 time period High EPTs quality Functionality
nine periodShort EPTs guide time and cargo
10 periodProfessional EPTs services

We can provide with sample for top quality and purpose screening period

Solution Description colon

EPT EPT Steel SAE1571 comma SAE1045 comma Cr12 comma 40Cr comma Y15Pb comma 1214Letc
Alloy Stee 20CrMnTi comma 16MnCr5 comma 20CrMnMo comma 41CrMo comma 17CrNiMo5etc
Brass solBronze HPb59-one comma H70 comma CuZn39Pb2 comma CuZn40Pb2 comma C38000 comma CuZn40etc
Type EPTl Equipment
Treatment Warmth treatments comma Carburizing comma PoEPTng
StXiHu (West Lake) Dis.Hu (West Lake) Dis.rd ISO solR 606
Machining approach fabrication commastamping commadeep drawing commaEPT hobbing comma EPT milling comma EPT shaping comma machining and assembly EPT broaching comma EPT grinding and EPT gaping
Module one period0 comma one period25 comma 1 period5 comma 1 period75 comma two period0 comma two period25 comma 2 period5 period of time period period of time period8 period0 and so on
Tolerance manage Outer Diameter colon pm0 period005mm Size Dimension colon pm0 period05 mm
Tooth precision GB1244-85 comma DIN8188 comma ISO solR 606 comma EPT B 29 period1M
Heat treatment method Quenching amp Tempering comma Carburizing amp Quenching comma Higher-frequency Hardening comma EPTitriding period of time interval interval
Surface area treatment method Blacking comma PoEPTng comma Anodization comma Chrome plating comma Zinc plating comma Nickel plating time period period of time time period

Our firm has a range of EPTed higher-precision processing equipment comma EPT generation EPT commaimprove the implies of detection comma a seem merchandise top quality administration method comma for clients solid very first-class top quality period
Our Service
one periodOEM colon In accordance to your drawings and samples requirements period of time
2 periodManufacturer with aggressive price tag and high high quality interval
three period of time 100 percnt inspection prior to supply time period
four time period Convenient transportation period of time
five interval Excellent EPT period
six time period Tiny EPTs Orders Acknowledged period of time
7 time period Rich seasoned staff Expert technological help and resolution crew

EPT amp Shipping colon
EPT Particulars colon Plastic bag interior and stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd carton outer or as for every shopper aposs needs
Supply Detail colon Transported in twenty-thirty daEPTafter EPT TT payment

If there are any concerns or need to have our aid comma you should speak to with us with no hesitate comma or you can deliver a concept to us period

  in Kigali Rwanda  sales   price   shop   near me   near me shop   factory   supplier Steel Spur Transmission Bevel Gear for Conveyor, Planetary Transmission Gear for Machine manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Kigali Rwanda  sales   price   shop   near me   near me shop   factory   supplier Steel Spur Transmission Bevel Gear for Conveyor, Planetary Transmission Gear for Machine manufacturer   best   Cost   Custom   Cheap   wholesaler